Two Cases of Valsalva Retinopathy
Treated with Nd:YAG Laser Hyaloidotomy

Suzane Vassallo, PhD AOB1,2
Catherine Mancuso, BOrth AOB2
C. Alex Harper, FRANZCO2,3

1Department of Clinical Vision Sciences, La Trobe University, Melbourne, Australia
2Victoria Parade Eye Consultants, St. Vincent’s Medical Centre, Melbourne, Australia
3Centre for Eye Research Australia, Melbourne, Australia

INTRODUCTION

Valsalva hemorrhagic retinopathy was first described by Duane1 in 1972. As the description suggests, the retinopathy arises following a Valsalva manoeuvre wherein forcible exhalation occurs against a closed glottis. The manoeuvre causes an increase in intrathoracic and/or intra-abdominal pressure, with an accompanying increase in venous pressure in the upper parts of the body, including the eye1. A sudden elevation in intraocular venous pressure may cause normal or abnormal perifoveal capillaries to haemorrhage – immediate and painless loss of vision ensues in an otherwise healthy eye1. Vision loss is commonly unilateral3.

Valsalva retinopathy has been reported to occur during labour4, heavy lifting (including weight lifting)3, 5, 6, fiberoptic gastroenteroscopy7, rigorous sexual activity8, blowing balloons9 and colonoscopy10. Coughing, sneezing or vomiting are also commonly cited aetiologies1, 2.

The fundus findings observed with this type of retinopathy varies. The picture may range from one of isolated localised oedema1, or a small well circumscribed parafoveal preretinal haemorrhage3, to a massive dome-shaped haemorrhage of up to 5 disc diameters11 or more8 in size. The latter may serve to completely obscure the fovea. The size of the haemorrhage seems to correlate with the amount of venous pressure endured during the manoeuvre1.

The haemorrhage in Valsalva retinopathy may be located between the internal limiting membrane (ILM) and retinal nerve fibre layer (sub-ILM)12, or between the posterior hyaloid face and the ILM (subhyaloid)2. It could also be in both locations2. The position of the haemorrhage is clinically difficult to differentiate via slit-lamp biomicroscopy13, though fine striae and a glistening light reflex on the haemorrhage surface favours a sub-ILM lesion2, 6, 12. A more definitive diagnosis appears possible using optical coherence tomography (OCT). Recent findings from two patients6 highlight that the location of the haemorrhage in Valsalva retinopathy is most likely sub-ILM. While this view has been supported by others12, the posterior hyaloid face and ILM are not always visible on OCT in the presence of a premacular haemorrhage7.

Valsalva retinopathy can lead to sudden temporary loss of binocular function. The haemorrhage is usually self-limiting, clearing spontaneously over weeks to months3, 7. Intervention in the form of neodymium (Nd):YAG laser hyaloidotomy. Even in the presence of a large haemorrhage the prognosis is excellent in an otherwise healthy eye. Two cases of Valsalva retinopathy are presented.

Keywords: Valsalva maculopathy, Nd:YAG laser hyaloidotomy, retinal haemorrhage
CASE 1

A 46-year-old female presented 3-days following sudden loss of vision in her right eye. Upon specific questioning she reported occasional coughing during the 2 weeks prior to her visit, though denied heavy lifting and vomiting. Past ocular history was unremarkable. Her general health, including blood pressure, was normal (105/80 mmHg) and she was not taking any form of medication. Family history was not significant.

Unaided visual acuities were Right (R.) 6/24 Left (L.) 6/18, though each eye improved with pinhole to 6/9, 6/6, respectively. Refraction was not performed at this visit. Intraocular pressure was R. 8 mmHg and L. 9 mmHg. Pupils were equally reactive to light and were dilated with g. tropicamide 1% and g. phenylephrine 10%. Right eye fundus examination revealed a large premacular haemorrhage with foveolar sparing (Figure 1A). The area of the haemorrhage was approximately 5.5 disc diameters and was thought to be subhyaloid. The foveola sparing permitted relatively good visual acuity in this eye (with pinhole), despite the size of the lesion and the patient’s presenting complaint. The left eye fundus was normal.

CASE 2

A 28-year-old male Indian student presented with a 4-day history of a red spot obscuring the central visual field in his left eye. Aside from occasional sneezing, he denied any other Valsalva activity. His general health and family history were unremarkable and he was not taking prescription or non-prescription medication. He was a moderate myope (R. and L. -4.00 DS) and prone to developing chalazia.

Corrected visual acuities were R. 6/4 and L. count fingers (CF) when viewing eccentrically with this eye. Intraocular pressures were R. 13 mmHg and L. 14 mmHg. Pupils were equally reactive to light and were dilated with g. tropicamide 1% and g. phenylephrine 10%. In the left eye, fundus examination revealed a large subhyaloid haemorrhage of about 5 disc diameters in area (Figure 1B). Retinal nerve fibre layer haemorrhages were also evident. The right eye fundus was unremarkable.

MANAGEMENT

Both cases were managed in the clinic on the day of their presentation with a single shot of Nd:YAG laser (Coherent, Santa Clara, CA) (pulse power 3.2 mJ) to the anterior surface of the posterior hyaloid membrane in an attempt to drain the haemorrhage. The procedure is referred to as a hyaloidotomy or membranotomy. The laser was aimed at the inferior portion of the haematoma, away from the fovea.
Both cases were reviewed one week post laser treatment and both reported an improvement in visual acuity. The fundal view showed vitreous haze, consistent with dispersion of the haemorrhage into the vitreous gel (Figure 4). When compared with the first visit, Case 1 demonstrated clinically stable visual acuities with R. 6/24 L. 6/18, and improvement to 6/5 bilaterally was obtained with refractive correction (R. -3.00/+0.75 x 10° L. -1.50DS). She was monitored for about 3 months post treatment, during which time her right eye vision remained stable. She was then discharged.

Case 2’s corrected left eye visual acuity had improved to 6/18- one week post treatment (having initially presented with CF eccentrically). He noted black dots in his left visual field. This continued to clear over subsequent visits. Seven weeks post hyaloidotomy his corrected left eye visual acuity returned to 6/4 and the haemorrhage had completely cleared (Figure 5). Further review was not required.

DISCUSSION

These findings confirm that Nd:YAG laser to the posterior hyaloid face is a safe, rapid and effective intervention in the treatment of premacular haemorrhage arising from Valsalva retinopathy4, 11, 13-17. Vision is restored as the blood clears away from the visual axis. The same treatment modality can be used when managing premacular haemorrhages arising from diabetic retinopathy, vein occlusion or retinal macroaneurysm11. Although the two cases presented here were not followed beyond 2 to 3 months, those followed for up to 2 years or more have not displayed retinal or choroidal injury from Nd:YAG laser treatment for premacular haemorrhage13, 18.

Nd:YAG laser photodisruption was first described in the German literature in 198817 when multiple laser shots were used to drain the haemorrhage. Since then, the technique has been somewhat modified so that a single laser shot is often used, with 2 to 3 subsequent shots4, 13, 14 employed.
when little drainage is evident from the first$^{13, 14}$. Favardin et al.15 have used up to 10 shots to clear a premacular haemorrhage arising from diabetic retinopathy.

Nd:YAG hyaloidotomy is considered most effective in treating a premacular haemorrhage of greater than 3 disc diameters in area and of no more than 3 weeks’ duration18. Treating a large lesion assists in ensuring the laser beam is located away from the fovea – the laser site should be at the inferior margin of the haemorrhage$^{11, 13, 14}$. This reduces the risk of a foveal injury and promotes maximal drainage through the assistance of gravity16. The presence of underlying blood is also necessary at the laser site to ensure the retina is protected at this location11. A long-standing haemorrhage can be difficult to drain due to blood clotting15, although a recent report confirms drainage of longstanding altered blood19. Others20 advocate laser treatment for haemorrhages of less than 2 weeks’ duration. Once the blood has drained into the vitreous, it breaks down over time and is spontaneously resorbed. It has been suggested that patients be informed to sleep in an upright position to encourage blood settling inferiorly22.

Conservative management of Valsalva retinopathy involves observation. Generally, the premacular haemorrhage can completely resolve over several months, with full visual recovery in a healthy eye$^{1-3, 7}$. However, such an approach should be reserved for small haemorrhages for these are not suitable for Nd:YAG laser intervention due to the potential for foveal damage18. Prompt intervention may be offered for large haemorrhages to speed resolution and restore vision.

Vitrectomy is an option to drain the premacular haemorrhage caused by Valsalva retinopathy6, however, Nd:YAG laser membranotomy is quick, far less invasive and has fewer potential side effects. The use of vitrectomy in treating premacular haemorrhage due to diabetic eye disease is well established22.

It has been suggested that patients be informed to exhale during straining or lifting heavy objects so as to prevent a closed glottis and possible retinal damage5. It would also be apt to advise patients about the possibility of haemorrhage recurrence where this is considered likely2. Finally, reassuring the patient about their prognosis cannot be underestimated2 and should constitute part of the management approach as well. Many$^{1, 13, 14}$ have suggested randomised prospective trials are required to differentiate the mode of treatment which is best for a premacular haemorrhage.

Even though both cases reported were somewhat myopic, there appears no predilection for Valsalva retinopathy with respect to refractive error, age, race or sex21. Another aetiology which should be considered when assessing cases of Valsalva retinopathy is the competency of the valve in each internal jugular vein. This is the only valve between the heart and the brain and serves to prevent retrograde venous flow. Diagnosis of a faulty valve is possible via ultrasound investigation29. In such cases, patients may not present with a history of a Valsalva manoeuvre per se. These patients would need to be informed about the likelihood of haemorrhage recurrence.

The location of the premacular haemorrhage was thought to be subhyaloid in both cases presented. Striae were not evident on the haemorrhage surface as would be the case for a sub-ILM haemorrhage$^{6, 8}$. Also, it has been postulated that when Nd:YAG laser membranotomy is performed on a sub-ILM haemorrhage, epimacular membrane formation is more likely to result6. This was not noted in the cases presented here but perhaps a longer follow-up is required24. The rapidity with which the haemorrhage drained is suggestive of a subhyaloid bleed as well14. While OCT imaging was not performed in the investigation of these cases, the management options for Valsalva retinopathy would not differ depending upon haemorrhage location14.

CONCLUSION

Complete resolution of the haemorrhage in Valsalva retinopathy results in an excellent outcome. The findings from the cases presented here support the use of Nd:YAG hyaloidotomy in its management. It appears a safe and effective means of promoting the rapid return of visual acuity to its former state in an otherwise healthy eye. Patients can be reassured about their visual prognosis.

REFERENCES

13. Çelebi S, Küçker AS. Photodisruptive Nd:YAG laser in the management of

The 64th Annual Scientific Conference of the Orthoptic Association of Australia

The Orthoptic Association of Australia is pleased to announce the Annual Scientific Conference will be held from 25-28 November in Perth at the Burswood Entertainment Complex. Perth will offer a unique back-drop for the conference and the social program will allow delegates to experience the best of the city’s entertainment, attractions and food. The scientific committee is preparing a diverse program which aims to disseminate and share knowledge, exchange ideas and promote collaboration.

The scientific committee invites submissions of abstracts for oral (~12-15 min), rapid fire (5-10 min) or poster presentations. Abstracts must be emailed as a Word document attachment and include the following: name & address of corresponding author, presenter/s name and affiliation/s, abstract type (oral, rapid fire or poster), abstract title, abstract, short biography of presenter, eligibility for the Emmie Russell Prize and/or the Paediatric Orthoptic Prize, and expression of interest to submit a manuscript for rapid publication in the Australian Orthoptic Journal. The abstract should not exceed 250 words and the biography no more than 50 words. All abstracts must be emailed to Connie Koklanis k.koklanis@latrobe.edu.au no later than Tuesday 11th September 2007.

Further details of the conference will soon be published on the OAA website www.orthoptics.org.au. We look forward to you joining us for what will undoubtedly be a stimulating and memorable meeting. Francine Hyde, Conference Convenor Connie Koklanis, Scientific Program Coordinator Zoran Georgievski, Scientific Program Coordinator