Teacher identification of children at risk for language impairment in the first year of school

DIANA ANTONIAZZI1, PAMELA SNOW2, & VIRGINIA DICKSON-SWIFT1

1La Trobe University, Bendigo, Australia, and 2Monash University, Melbourne, Australia

Abstract

While the first 3 years of formal schooling have obvious importance for the transition to literacy, it must be remembered that learning to read is a linguistically-based task that draws heavily on mastery of key oral-language skills such as phonemic and morphological awareness, vocabulary development, and early syntax. In order to support the transition to literacy, and because oral language competence is important in its own right, it is vital that early-years teachers are skilled at identifying children who may be at risk of oral language impairment. In this study, 15 teachers completed the Children's Communication Checklist (second edition) on children in their first year of school (n = 149), and ratings were compared with results of screening using the Clinical Examination of Language Fundamentals Screening Test (fourth edition). Teacher ratings showed poor sensitivity and specificity in identifying children whose oral language skills require further investigation. Results are discussed in the light of recommendations for teacher pre-service education, SLP advocacy for oral language competence as a life-long determinant of health, issues in screening during the early years of school, and implications for further research.

Keywords: Teachers, language impairment, screening, prevalence.

In addition to fostering the transition to literacy, teachers play an important role in developing student speaking and listening skills within the classroom (Jones, 2007). It is widely acknowledged that reading is a language-based skill (Bishop & Adams, 1990; Catts & Hogan, 2003; Foorman, Anthony, Seals, & Mouzaki, 2002; Leonard, 1998; Scheule, 2004; Snowling, Gallagher, & Frith, 2003). Impairments in phonological awareness, letter knowledge and oral language skills such as vocabulary and expressive grammar have been found in children classified as poor readers (Bishop & Snowling, 2004; Catts, Fey, Tomblin, & Zhang, 2002; Snowling et al., 2003), but may not always be immediately obvious to the non-specialist. Distinguishing atypical from typical language development can be difficult due to variability in normal language development (De Ridder & Van der Stege, 2004) but detection of oral language deficits has significant implications for a child's general communicative competence as well as for the transition to literacy.

It is estimated that approximately 16% of Australian children have difficulties learning to read (Westwood, 2001). In a world which is heavily reliant on rapid transfer of information via written text, many students are doomed to experience long term academic, vocational and psychosocial difficulties as a result of poor literacy skills. Poor reading has, in fact, been described by the US (National Institute of Child Health and Human Development, 2007) as a national health problem. The Adult Literacy and Life Skills Survey (ALLS; Australian Bureau Statistics, 2007) showed that the median weekly income for people assessed with the highest level of prose literacy (e.g., ability to read newspapers) was $890 compared to $298 for those assessed at the lowest level. Alarming, only 54% of the sample was identified as possessing the prose literacy skills required for daily functioning.

As well as underpinning the transition to literacy, oral language competence also has important implications for the development of a range of social and vocational skills, and has recently been positioned as a potential protective factor in the lives of young people, particularly those facing social and/or educational marginalization (Snow & Powell, 2004, 2008). Early detection of oral language difficulties by teachers may therefore influence not only literacy outcomes for students, but also their psychosocial development more generally. Therefore, it is
important to determine whether teacher judgements of oral language skills can be used to reliably identify young students at risk.

Historically, teacher judgements of reading achievement have been investigated more extensively than judgements of oral language competence (Bates & Nettlebeck, 2001; Hoge & Coladarci, 1989; Martin, 2005). In their study conducted in South Australian primary schools, Bates and Nettlebeck (2001) showed that when scores of reading accuracy and comprehension in 6–8-year-olds were compared with teacher estimates of reading skills, approximately one third of teacher judgements were inaccurate by at least 12 months, with 75% of estimations being outside one standard deviation of the mean. Teachers in this study tended to overestimate performance of children with poorer reading comprehension and accuracy, and underestimate the achievement of more competent readers.

In a Dutch study (Gisiel, Bosman, & Verhoeven, 2006), teacher judgements of students at risk of developing reading or spelling difficulties in Grade 1 were found to be moderately associated with ratings taken when the children were in kindergarten. However, a large number of false positives occurred, indicating low sensitivity of teacher ratings overall. Increased accuracy of prediction resulted when these were combined with other measures, such as letter knowledge and rapid naming skills.

Contrary findings were reported by Martin (2005) who found a strong relationship between teacher judgements and student performance, with more accurate judgements for lower-achieving students than for higher achieving students recorded. The teachers in this study were required to complete a rating scale based on their judgements of student performance on a measure of phoneme segmentation and nonsense word fluency. These findings raise the possibility that improved predictions result when a rating tool is provided, versus reliance on teacher estimations alone.

More promising findings were also reported by (Gilmore & Vance, 2007), who showed teacher ratings of children’s listening and verbal comprehension skills to be significantly correlated with formal assessment of their verbal comprehension scores. However speech discrimination test scores and teacher ratings were not correlated. Williams (2006) found that teachers of students in the first 2 years of school were able to identify students whose oral language skills placed them at risk of literacy difficulties, with 86% sensitivity rates. These teachers were not given extensive training or tools on which to base their judgements. In this study, the majority (80%) of teachers reported average understanding of different aspects of language such as phonology, syntax and grammar. Further, 85% of teachers described themselves as “moderately confident” or “confident” in their skills in recognising students with speech and language difficulties.

Few studies have investigated the use of teacher ratings of oral language as a predictor of academic achievement in school-age children. Haurewas and Stone (2000) found that teachers of children (aged 5–7 years) with language impairment were better predictors of language skills than teachers of children with typically-developing language skills. A recommendation from this study was that comparisons of speech-language pathologist (SLP) and teacher ratings should be used to evaluate the accuracy of teacher estimations. Teachers prediction of children at risk of reading failure has been shown to improve through the use of rating instruments (Flynn & Rahbar, 1998). Teacher ratings of language, literacy and behaviour correlated significantly with standardized test scores in the research conducted by Fletcher, Tannock and Bishop (2001). Results also indicated that teacher-based screening instruments have the potential to be economical and effective ways of identifying children at risk of educational problems.

The validity of the Children’s Communication Checklist (second edition; CCC-2; Bishop, 2003) in identifying children with different clinical categories of language impairment was examined by Norbury, Nash, Baird and Bishop (2004). The authors did not indicate the level of training provided to parents and teachers but there was a requirement that the form be completed by teachers only if they had known the child for more than 3 months. The CCC-2 was found to distinguish children with/without communication impairment when using subtests of a formal validated language test as a reference point. Comparisons between parent and teacher ratings showed that teachers tended to assign higher (i.e., better) ratings overall. The CCC-2 was found to be a reliable screening tool in the identification of children with possible communication impairment, with good parent-teacher inter-rater agreement (r = .79) when investigating social-interaction deviance composite. Validity was determined by minimal overlap in General Communication Composite (GCC) scores between children with communication impairment and typically developing children.

Heath and Hogben (2004) endeavoured to devise a cost-effective screening process for early identification of children with literacy difficulties. They showed that administering the Recalling Sentences subtest of the Clinical Evaluation of Language Fundamentals-Revised (Semel, Wiig, & Secord, 1987) was effective in identifying poor readers. Focused teacher rating scales were found to be a cost-effective way of identifying children at risk of reading failure in Kenny and Chekaluk’s (1993) research, as the test battery they used took 60 minutes to administer, compared to a five minute teacher questionnaire. In this study, 63 teachers completed rating scales on 312 Australian children from preparatory, year 1 and 2. The assessment protocol comprised seven tests administered by
district school counsellors and final year SLP students. The authors concluded that teacher-administered screening may be a useful way of detecting students at risk of reading failure, subject to the development of improved teacher rating scales.

Given the inconsistency in the literature, therefore, the aim of this study was to examine the accuracy of teacher judgements of early oral language skills in children in their first year of schooling, and to examine the correspondence of these ratings with performance on a formal language screening measure.

Method

Participants

A cluster of eight Catholic Primary schools based in a large regional city in Victoria was invited to participate in the study. According to Catholic Education Office census information, 275 preparatory students were enrolled in Catholic Primary schools in this region in 2007. The study was approved by the La Trobe University Human Research Ethics Committee and by the Catholic Education Office.

Using the Socio-Economic Status SES index (Department of Education Science and Training, 2007), three of the eight schools were assessed to be of low SES and the other five were middle to high SES. The principals of the eight schools were invited to attend an information session outlining the aims and requirements for participating in the study. Principals were asked to discuss the project with their preparatory teachers and then provide written approval for the school to participate in the study. Seven of the eight principals elected to participate.

Across the seven schools, all 19 preparatory teachers were invited to participate and 15 (12 female and 3 male) agreed to do so. Two new graduate teachers elected not to participate due to concerns regarding workloads. The remaining two did not respond to the invitation.

Preparatory students were chosen as a focus of screening as early identification of oral language difficulties is necessary to ensure positive literacy outcomes. A further justification for the selection of preparatory students was that teacher knowledge of individual student language ability would be limited and comparable as all students were new to formal schooling. Of the 251 full-time preparatory students enrolled in the seven participating schools, 157 parents provided written consent, resulting in a participation rate of 62.54% prior to application of the exclusion criteria.

Exclusion criteria

Students with known permanent or fluctuating hearing loss, intellectual disability, severe speech/articulation disorder and/or from non-English speaking backgrounds were not included in this study, as these variables can independently influence language competence. Teachers recorded this information on the checklists they completed. Final decisions regarding inclusion were made by the first author and eight students were excluded from the study due to the application of these criteria. Two were from non-English speaking backgrounds, two were diagnosed with childhood apraxia of speech, one had a diagnosed permanent hearing loss and one because he chose not to provide verbal responses during the screening session. One teacher chose not to complete checklists on two students with autism spectrum disorders. After these exclusions 149 (76 males and 73 females) students were studied. Participants were aged between 61 and 78 months (mean = 69 months; SD = 4.2).

Procedure

During term 1 of the 2007 school year, teachers interested in participating in the project attended an information session where details and participation requirements were explained. Teachers were given information regarding the checklist that was to be used (CCC-2; Bishop, 2003), and checklist items and scoring procedures were explained and discussed by the first author. They were provided with copies of the checklist, and were asked to complete these for all students having consent to participate. Teachers were encouraged to make observations of the students’ oral language skills during term 2 and completed checklists were collected at the end of term.

Language assessment was conducted on an individual basis in a quiet room in the school. Data collection usually involved 20–30 minutes withdrawal from the classroom per student. Students absent on the day of screening were followed-up and included in the study.

Standard administration and scoring procedures were used for all standardized tests; total scores were converted to percentiles on the nonverbal intelligence screening tool, while total scores on the language screening tool were converted to criterion scores.

Measures

Two standardized screening tests were administered and teachers completed one checklist per student. Follow up language testing with a diagnostic language assessment battery was performed by a SLP, if screening results indicated that this was necessary.

Clinical Evaluation of Language Fundamentals Screening Test-Fourth Edition

The Clinical Evaluation of Language Fundamentals Screening Test-Fourth Edition, (CELF-4 Screening Test Semel, Wiig, & Secord, 2004) was used to
identify students who may be at risk of language learning problems. The CELF-4 Screening Test is based on the Clinical Evaluation of Language Fundamentals-Fourth Edition (CELF-4; Semel et al., 2003). The purpose of the CELF-4 Screening Test is to identify students who need to be referred for more extensive language assessment.

This test was chosen because it is a validated measure employing the most discriminating items from the CELF-4, it requires only 15 minutes to administer, and can be administered by paraprofessionals as well as by SLPs. The CELF-4 Screening Test is Australian-language adapted which ensures that the items are culturally relevant for Australian children. For students aged 5–8 years, 28 items are administered, testing four different language domains. Items 1–7 assess the student’s knowledge of grammatical morphemes, 8–13 vocabulary associations, 14–19 interpretation of spoken directions and 20–28 verbal sentence repetition. These items screen abilities measured on subtests in the full version of the CELF-4 such as word classes, concepts and following directions, recalling sentences and word structure. The total number of correct items is computed and then compared to the student’s age and the criterion score for the relevant age range.

Standardization of the CELF-4 Screening Test was based on a sample of 1200 American students aged between 5;0 and 21;11 years. Criterion scores were developed after analysing items for difficulty, discrimination and differential item functioning. Means and standard deviations of the total score for each age group were reported. Given that items for the CELF-4 Screening Test were selected and developed from the CELF-4 itself, content validity is similar. Evidence of sensitivity and specificity of the test accurately identifying students who do/do not have a disorder is reported as .88 for both (Semel et al., 2003). For the 5;0 to 8;11 year age-group, test-retest reliability was estimated to be .89 indicating sufficient stability of scores from test to retest.

Children’s Communication Checklist—Second Edition

Teachers were asked to complete the CCC-2 (Bishop, 2003) on participating preparatory students. This checklist was chosen because it is a screening device aimed at identifying children who are likely to have language impairment. The 70-item questionnaire is easy to complete and comprises 10 scales: A. speech, B. syntax, C. semantics, D. coherence, E. inappropriate initiation, F. stereotyped language, G. use of context, H. nonverbal communication, I. social relations, J. interests. A General Communication Composite (GCC) is computed to identify children likely to have significant communication problems. The CCC-2 standardization sample in Australia consisted of parents of 111 school students aged 6, 9 and 12 years. Internal consistency scores were found to be at least .65 for all scales, indicating ratings cluster together within each scale.

Bishop (2003) indicated that there was high agreement between parents and professionals when distinguishing between language characteristics of autism and SLI. Three clinical samples were used to gather information regarding validity of the checklist. Generally profiles obtained for subgroups matched those predicted. The SLI group experienced more difficulties with scales A to D, while their pragmatic language performance was less affected. Overall, Bishop found the CCC-2 to be a valid screening instrument. GCC scores above the 10th percentile were not generally achieved by children with SLI in the validation sample.

Clinical Evaluation of Language Fundamentals—Fourth Edition

Follow up testing with the Clinical Evaluation of Language Fundamentals-Fourth Edition CELF-4; (Semel et al., 2003) was performed on students who were identified as at-risk on both the CELF-4 Screening Test and the CCC-2. The CELF-4 is a comprehensive clinical tool used for the assessment and diagnosis of language and communication disorders of 5–21-year-olds. Follow-up testing allowed examination of the extent to which the two screening measures used together or individually are reliable tools for detection of students at-risk. For the purpose of this study, eight students randomly selected from the group of students identified as at-risk only on the CELF-4 Screening Test received further assessment. The remaining students identified as at-risk on the CELF-4 Screening Test received follow-up testing at a later date. Similarly eight randomly selected students identified as at-risk on the CCC-2 alone, received follow-up testing with the CELF-4. This was performed to investigate the effectiveness of the CELF-4 Screening Test and CCC-2 when administered in isolation.
Results

Language skills, nonverbal IQ and teacher ratings

The raw score means and SDs for each test and checklist are presented in Table I. A score of 54 or less on the CCC-2 corresponds to a score within the bottom 10% of children. Scores in the range 10–14 were expected on the CELF-4 Screening Test for students aged 60–78 months (Semel et al., 2004). A raw score of less than 10 on the CELF-4 Screening Test corresponds to an age equivalent score of less than 60 months, while a score of 18 indicates an age equivalency of 96–105 months. A score of 15 on the CPM represents the 50th percentile for children aged 66 months (Raven et al., 1998).

The distribution of scores for the CELF-4 Screening Test and CPM was essentially normal while scores were positively skewed on the CCC-2 reflecting the fact that many students were rated by teachers as performing under one standard deviation below the mean.

Comparison between formal language measures and teacher ratings

For the purposes of this study, students who achieved a total score below the CELF-4 Screening Test criterion score for their age were considered to be at-risk of language difficulties and requiring more comprehensive language assessment. Employing this criterion, the CELF-4 Screening Test positively identified 32 students (i.e., 21.5%) as possibly language impaired. A GCC score of 54 or less on the CCC-2 is generally indicative of possible language disorder (Bishop, 2003). Forty-five students were identified by teachers as at-risk, indicating that almost a third (30.2%) of the sample was judged to possibly have some form of language impairment (LI). If taking the formal screening instrument (CELF-4 Screening Test 2004) as a reference point, several false positive judgements were made by teachers. That is, teachers identified students as being at-risk who did not meet the at-risk criterion on formal language screening. Nineteen students as being at-risk who did not meet the at-risk criterion on language screening. Thirteen (8.72%) were identified as at-risk on both measures. Table II displays a 2 × 2 matrix of the number of children identified as possibly LI on both measures (CELF-4 Screening Test and CCC-2).

Sensitivity and specificity measures were calculated. In this study sensitivity reflects the percentage of children who failed the CELF-4 Screening Test who were identified by teachers as needing further language testing (i.e., the likely true positive rate), and specificity represents the percentage of children with typical language skills who are identified as typical by the teachers (i.e., the likely true negative rate) (Spaulding, Plante, & Farinella, 2006). Higher levels of sensitivity and specificity generally indicate more accurate (i.e., valid) tests (Hennekens & Buring, 1987). Sensitivity (A/A + C × 100) was 40.6% while specificity (D/D + B × 100) was 72.6%.

Thirteen students (Cell A) were identified as at-risk on both measures. One student was identified as having an intellectual disability prior to further language investigation and so was not included in follow up language assessment with the CELF-4. For the purpose of this study, students achieving scores less than 85 in either receptive or expressive language skills (that is, more than 1 SD below the mean for children the same age) were considered to be language impaired (LI). Considering this criterion, 10 of the 12 remaining students in Cell A (83%) were identified as LI.

Of the 32 students identified as at-risk of LI on the CCC-2 only (Cell B), 8 were randomly selected for further language assessment. Results are presented in Table III. All of these students scored within the average range across all subtests, indicating no evidence of LI. This suggests a high false positive identification rate by teachers.

Eight of the 19 possible false negative cases (Cell C) were also randomly selected for follow-up diagnostic testing with the CELF-4. Table IV displays a 2 × 2 matrix of the number of children identified as LI on the CELF-4 and CCC-2.

Table II. Number of students identified as LI on CELF-4 and CCC-2.

<table>
<thead>
<tr>
<th>Teacher Ratings</th>
<th>CELF-4 Screening Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LI positive</td>
<td>LI negative</td>
</tr>
<tr>
<td>LI Positive</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>LI Negative</td>
<td>19</td>
<td>85</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>117</td>
</tr>
</tbody>
</table>

The current study compared teacher ratings of the language skills of 149 students in their first year of school with language profiles derived from formal screening. Nonverbal reasoning was examined to ensure that low cognitive skills were not a likely confounding variable in children identified as potentially LI.

Teacher judgements of students' language skills showed limited correspondence with formal language screening. Only 13 students were identified as at-risk on both measures, suggesting that as a group, teachers display low accuracy in identifying children who require further language assessment, and also falsely over-identify those who do not need follow up. Thirty-two students were falsely identified as at-risk on the CCC-2. This has serious implications for demand for SLP services which are often limited within the education sector. In this study, the use of the checklist as a referral method would have resulted in over-referral of non-LI students for SLP services and unnecessary follow up, together with under-referral of children who are likely to need diagnostic language testing and intervention services. Higher specificity rates of teacher ratings, suggested better identification of students with typical language development than of those with language problems. However approximately 59% of students identified as at-risk on formal screening were missed by teachers.

Discussion

The findings of this study have serious implications for student language and literacy outcomes, particularly for students who were not correctly identified as at-risk. The unidentified students may not receive the additional assistance they need to achieve academic benchmarks, and risk falling behind their peers. Often these students are identified later on with behavioural, adjustment, and/or attention deficits (Lindsay & Dockerell, 2000; Ripley & Yuill, 2005). Half of the students receiving follow up language testing as a result of identification only on the CELF-4 Screening Test were identified with receptive and/or expressive LI.

Our findings suggest that between 6 and 13% of children in a preparatory cohort will have an oral language deficit that will go undetected by their teacher. This is unacceptably high. False-negative results in health screening can have significant personal, social, and economic costs, including those associated with the identification of children who are LI but not identified by teachers.
associated with litigation (Petticrew, Sowden, Lister-Sharp, & Wright, 2000). For instance, legal action and payment of compensation has occurred in undetected cases of cervical and breast cancer following screening failure (Petticrew et al., 2000), and legal action in educational settings has recently become more common in Australia, including cases involving inadequate management of language impairment (e.g., Australian Broadcasting Commission: Radio National: The Law Report, 2008). Mass screening programs in the heath sector must show rigorous validity and reliability profiles in order to be funded (Hennekens & Buring, 1987). Screening for oral language deficits in educational settings is no less important than mass screening for disease. For this reason, SLPs need to advocate more strongly for early oral language competence as a determinant of health across the life-span.

It is possible that teachers over-identified LI because they knew two members of the research team were SLPs and were concerned about “missing” potential cases. However, over-errting on the side of caution in this way has significant economic and resource implications. Follow-up diagnostic testing of students identified as at-risk on the CCC-2 but not on the CELF-4 Screening Test revealed no cases of language impairment. Therefore for this study alone, eight students received unnecessary assessment and required approximately 10–12 hours of SLP services that could have been utilized more effectively elsewhere. False identification can also result in undue parent anxiety as well as negatively affecting student self-esteem.

Sensitivity rates of 86% were reported in William’s study (2006), where teacher judgements of children’s language skills were compared with standardized language tests. As with the current investigation, teachers in Williams’ study were given minimal direction about how to identify at-risk students and relied on their own knowledge of language development. They were, however, asked specifically to identify children whose speech and/or language difficulties placed them at risk for literacy difficulties, where-as in the current investigation, the teachers’ task was simply to identify children they judged to be at risk of language impairment.

As the CCC-2 is intended to be used by parents with varying educational backgrounds as well as university-trained professionals such as teachers, it is not expected that item complexity was a factor accounting for the findings. However, completion of the CCC-2 may have required teachers to make judgements on language dimensions they have not previously considered. Limited knowledge of normal language development and language structures measured on the checklist may also have contributed to inaccurate scoring. Teacher awareness of differences between speech and language may also have influenced completion of the CCC-2. During follow up conversations with teachers regarding students identified as at-risk, it was noted that students with articulation difficulties were often rated more poorly. Further demonstration of the completion of the checklist and discussion regarding the meaning of items with examples, may have resulted in fewer discrepancies between teacher ratings and formal assessment.

A number of other factors may have affected teacher judgements of language skills, such as timing of checklist completion. Observations were performed in term 2 of the school year and teachers may not have had adequate opportunity to observe all students’ language skills, particularly those of quieter students. Teaching experience, undergraduate training, school approach to language, and professional development undertaken by individual teachers all need to be considered in future research. It also must be considered that to some extent the CCC-2 and CELF-4 Screening Test may be differentially sensitive to different aspects of linguistic competence, meaning that some variability in the detection of cases is to be expected, though probably not to the extent reported here. In the “ideal world” multi-dimensional assessments would be performed on the language skills of all children in their first year of school. Unfortunately, however such practice is unlikely in the foreseeable future.

Preparation of pre-service teachers for the challenges of teaching students with atypical language development has been criticized as inadequate (Elkins, 2002). Various reports address teacher quality and achieving excellence in reading teacher preparation (Darling-Hammond, 1999; Hoffman, 2004; Rowe, 2003). However specific details regarding oral language coursework is limited. Fourth year pre-service teachers’ knowledge of language structure and linguistics was found to be “underdeveloped and insufficient . . . for the complex task of teaching reading and spelling” (Meehan & Hammond, 2006: 20). Moats (1994) observed that teacher awareness of spoken and written language structure is often not adequate for the purpose of teaching these skills. While training courses have an element of special education, it would seem that teacher training courses need to address oral language specifically, particularly typical language development and its role in the transition to literacy.

As speaking and listening are very much a part of the preparatory curriculum, teacher assessment of language skills within the classroom is a central component of a student’s academic record, and hence needs adequate emphasis in pre-service teacher education. The processes teachers use to evaluate student oral language also need consideration. Screening devices may not investigate all areas of language and cannot always identify all children with language impairments. Teachers can be limited to observing classroom discourse and not the full range of discourse genres children use. For this study, teacher completion of the CCC-2 was not an effective process for
identifying students at-risk of language impairment. In a study using the original version of the CCC (Bishop & Baird, 2001), only moderate parent-teacher inter-rater reliability was found, with parent responses more accurate when compared to clinical diagnoses. It is possible that teachers are less accurate using the CCC-2 because completion requires extensive time and exposure to the child’s language and such exposure to individual children can be highly variable in the classroom.

The SES profile of the school also needs to be considered when making judgements regarding language performance. It is possible that teachers in lower SES schools have different perceptions of “typical” language development and lower expectations regarding language achievement based on the whole school population. High false-negative rates were recorded by Fletcher et al. (2001) and it was suggested that children from disadvantaged backgrounds may be thought to be performing to the level expected but may in fact have considerable language delays.

Limitations

Due to high false negative rates of identification with the CCC-2 it is difficult to determine how many students were truly language impaired. While this is concerning, students who were identified as LI on follow-up diagnostic testing received appropriate programming and intervention. The remaining students identified as at risk on the CELF-4 screening test were also provided with more comprehensive language testing as a follow up to this study.

The participants in this study were recruited from within one sector in one school district. Inclusion of several geographically diverse districts may have shed light on whether location is a factor in teacher judgements of language skills. Also, inclusion of a variety of school systems may help to determine whether there are differences in oral language awareness, particularly between schools in different sectors. Bates and Nettlebeck (2001) reported that teachers in government schools tended to overestimate student reading skills when compared to those in non-government schools.

Information regarding teacher experience was not obtained in this study; however, it is possible that teachers with more teaching experience have a greater understanding of oral language development. On the other hand, more recently trained teachers could have been exposed to specific information concerning language due to modernization in undergraduate course content.

Recommendations for practice and further research

The findings of the present study suggest that teacher judgements of students’ language skills differ substantially from formal language testing. This should alert professional preparation institutions for teachers to the fact that greater emphasis needs to be placed on typical language development and the timely identification of students at-risk of academic difficulties. Also, once teachers are trained, follow up professional activities need to be made available to teachers to ensure ongoing awareness and understanding of the importance of oral language competence as well as literacy.

As specialists in language development and disorders, SLPs can assist with planning coursework for undergraduate and postgraduate courses and should be more involved in this. It is hoped that improved collaboration between SLPs and education personnel will result in more accurate assessment and identification of students at-risk of oral language and literacy problems. Collaborative research and curriculum development would also assist in developing successful approaches to language and literacy learning. Future research comparing teacher training courses and student outcomes may provide direction for improving teacher preparation (Barone & Morrell, 2007).

Ideally, replication of this study with a range of screening devices and a larger sample of teachers and students is needed. Collecting details regarding teacher experience and the content of undergraduate training may enhance the generalizability of results. Given adequate training and the appropriate screening tools, teacher judgements of oral language skills must have the potential to identify preparatory students at-risk of long-term oral language deficits and literacy difficulties.

Note

1. Preparatory year and is the first year of formal schooling in some Australian states and territories.

References

